OBJECTIVE

In Peripheral Nerve Field Stimulation (PNFS) and Occipital Nerve Stimulation (ONS), several system parameters can be varied to optimise the effect of stimulation in the management of chronic pain; one of which is the stimulation amplitude. Unlike the small threshold range of stimulation amplitudes often observed in Spinal Cord Stimulation (Threshold ratio of ~1.7-1.8), the threshold usage range and ratio in PNFS is thought to be much greater. This study investigates the threshold usage range and ratio of PNFS in a range of bipole, crosslead, and monopole configurations.

METHOD

To study the effect of cathode-anode interaction on amplitude threshold ranges and ratios, 21 patients with a permanently implanted PNFS or ONS systems in either their low back (n=13) or occipital regions (n=8) underwent a series of programming combinations to find perception and maximum discomfort thresholds. Combinations involved the cathode location being fixed, whilst the anode was either located on the IPG-can (monopole), other lead (crossleads), or on the same lead at differing distances (bipole) (Table 1). Pulse width was set at 500μs. Lead depths were determined using the pin-drop technique. Please see associated poster presented at INS London 2011 - Lee D. et al. The “pin-drop” technique: A novel method to measure the depth of implanted stimulation leads, for further details on this method. IRB approval was obtained.

RESULTS

Similar threshold ratios (Max discomfort mA/perception mA) were observed between the low back and ONS groups.

Table 1. Programming Combinations

<table>
<thead>
<tr>
<th>Electrode Configurations</th>
<th>Close Spaced Bipole 4mm</th>
<th>Close Spaced Bipole 8mm</th>
<th>Close Spaced Bipole 28mm</th>
<th>Wide Spaced Crossleads >30mm</th>
<th>Wide Spaced Crossleads >50mm</th>
<th>Monopole of the Cathode</th>
</tr>
</thead>
</table>

Average Perception Threshold at 500μs (mA)

<table>
<thead>
<tr>
<th>Implant Location</th>
<th>Average Perception Threshold at 500μs (mA)</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head (ONS) n=8</td>
<td>0.9 ± 0.3</td>
<td>0.8, 1.1</td>
<td>0.001</td>
</tr>
<tr>
<td>Low Back n=13</td>
<td>2.1 ± 0.3</td>
<td>2.0, 2.3</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Threshold Ratio at 500μs

<table>
<thead>
<tr>
<th>Implant Location</th>
<th>Threshold Ratio at 500μs</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head (ONS) n=8</td>
<td>0.7 ± 0.2</td>
<td>0.6, 0.9</td>
<td>0.01</td>
</tr>
<tr>
<td>Low Back n=13</td>
<td>1.5 ± 0.3</td>
<td>1.4, 1.6</td>
<td>0.005</td>
</tr>
</tbody>
</table>

SUMMARY

* Higher perception thresholds are observed in low back PNFS when compared with Head (ONS). This may be due to the shallower depth of the ONS electrodes (4-13mm) compared with the low back PNFS electrodes (4-20mm).

* In the low back pain group perception thresholds decreased with increasing bipole distance. Perception thresholds observed using a tight bipole (4mm) were almost twice as high as that of crosslead and monopole configurations.

* Lead configurations did not impact on perception thresholds in ONS

* Threshold ratios are not dependent on bipole spacing. This result is concordant with those found in Spinal Cord Stimulation.

* Threshold ratios in PNFS are higher than those traditionally observed in Spinal Cord Stimulation (SCS TR=1.4-1.8).

These preliminary findings demonstrate that in PNFS, the threshold ratio is higher than in typical SCS, suggesting that peripheral nerve fibres may have a slow recruitment as compared to dorsal column fibres.

REFERENCES

ACKNOWLEDGMENTS

We wish to acknowledge Boston Scientific Corporation for their financial support and technical assistance provided by their team members.

Corresponding Author: Dr. Paul Verrills
pverrills@metrospinal.com.au
www.metrospinal.com.au

Assessing Perception Threshold and Usage Ranges as a Function of Bipole Distance in Peripheral Nerve Field Stimulation and Occipital Nerve Stimulation

Paul Verrills (MBBS FAFMM MPainMed FIPP) and Adele Barnard (BSc(Hons) PhD)
Metro Spinal Clinic, Melbourne Australia